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ABSTRACT 

Let/~' be the family of non-empty closed subsets of the Riemann sphere and 
A the family of continuous curves A with values in the unit disk and 
lirnt-. 1 I 2(01 = 1. A meromorphic function f in [ z I < 1 induces a mapping f 
from A into/a' by setting )?(2) equal to the duster set o f f  on L The authors 
show that if f is continuous then existence of an asymptotic value at e ~~ implies 
the existence of an angular limit. Further if the spherical derivative of f is 
o(1/(1- lz[ )) then f i s  constant on every open disk in the space A. 

1. Introduction and notation. Let D =  {z I ]z[ < 1}denote the unit disk and 
c =  Czl Izt = 1} its boundary. For points za and z 2 in D the non-Euclidean 
(hyperbolic) distance between zx and z z is given by the formula 

1 lelz=-ll + I 1-z2 I 
T log lelz _ii_l _-7  f 

We designate the extended complex plane by W and the chordal distance between 
wland wzin Wby 

[wl - w2[ 

x(wl,w2) = 4 (  1 +lw,12 ) 4 0 +  iw212 ) 
Let u' denote the family of non-empty closed subsets of W with the standard 
Hausdorff topology generated by I [4, pp 20-32], where the distance between 
two sets A,B  ~ u' will be denoted by dist (A,B). The setA will be the family of all 
continuous curves 2(t) in D with ,%(0) = 0 and limt~ 1[ ,%(0 [ = 1. The symbol A*(0) 
indicates the subset of curves of A which approach e (~ nontangentially, i.e., 
,%(t) cA*(0) if limsup,_.~ [ arg(z(t) - e (~ - 0[ < n/2. The cluster set of a complex- 
valued function f along the path ,%(0 in D~terminating in C is defined as follows 

Cx(,.f) = {w I there is {Zn}, z .  e2  

lim ]z.] = 1 with limf(z.)=w}. 
n-bOO n--~ O0 
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In this paper we define a metric/~ on Aand show that with this metric topology 
A*(0) is an arcwise connected Hausdorff subspace of A. There is the usual geo- 
metric interpretation of e-spheres in this metric topology. That is two Jordan 
curves 21(0 and 22(0 in A lie in the same e-sphere if the curve 22(0 lies in the non- 
Euclidean e-"envelope" about 21(0 and if 21(0 lies in the non-Euclidean e- 
"envelope" about 22. 

We shall need the following definitions and results. 
DEFINITION 1. A function f defined in D withl vaues in! Wis said to e normal 

if and only if whenever {S~(z)} denotes the family of 1 : 1 conformal mappings 
of D onto D, the family {f(S~(Z))} is normal in the sense of Montel. For mero- 
morphic functions this definition is due to Lehto and Virtanen 1-6, p. 53]. Each 
function f in D determines a natural map f o f  the space A into the space #'. This 
map is defined as follows 

= c (f) 

It is shown in w that for a continuous normal function f, f i s a  continuous function. 
Lehto and Virtanen I-6, pp 59-62] have shown that if a meromorphic function f 

is normal and has asymptotic value 0~ at e ~~ then f has angular limit ct at e ~~ 
DEFINITION 2. A continuous function f mapping D into W is said to have 

the Lindelrf property at e ~~ if wheneverf has asymptotic value 0~ at e ~~ then f 
has angular limit ~ at e ~~ 

Using the results of Lehto and Virtanen we will prove the following theorem; 

THEOREM. l f  f is meromorphic and f is continuous then f has the Lindeli~f 
property at each e ~~ 

Finally, in 4 it is shown that if p(f)(z) = o(1/1 - [ z l) where p(f) denotes the 
spherical derivative o f f  then f i s  a constant value on every open disk in A. 

2. The p* function. Bagemihl and Seidel [2, p. 263] have used the non- 
Euclidean Frdchet distance to define a metric on the family of boundary paths in D. 
However, this metric is defined in terms of topological correspondences between 
the two given boundary paths. The t9 function is patterned after that of the metric 
function used in the Hausdorff topology with the non-Euclidean metric as the 
defining tool. For any set A c D and any point z ~ D set 

LEMMA I. 

p(z, A) = g.l.b, p(z, y). 
y ~ A  

The function (possibly infinite-valued) 

p*(21,22) = max (sup p(x,22), sup p(y,21)) 
xeY.t ye~,2 
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satisfies the metric properties for any three c u r v e s  21,22,23 such that p*(22,23) 
and p*(2i,22) arefinite. 

Proof. (This is the standard proof which we give for the sake of completeness 
only.) If  p*(21,22)= 0 then p(x,22) = 0 for each x e 21. 

Since there is a point y = y(x)~22 with p( ,22)= p(x,y(x)) we have 21 ~ 22. 
Thereverse inclusion is similarly verified so that 21 = 2z. The symmetry is clear. 

If  p*(22,23) and p*(21,,~,2) are finite we show that p*(21,23)~p*(21,22) 
+ p*(22, 23). For if x e 21, y e 22, Z ~ 23 then 

(2.0) p(x, z) s p(x, y) + p(y, z). 

Assume p*(21,23) = sup,,x,p(x,23). Taking the greatest lower bound of  both 
sides of (2.0) for z e 23 we obtain 

(2.1) p(x,23) ~ p(x,y) + p(y,2a). 

Now for x e 21 let y = y(x) be a point of 22 such that 

(2.2) p(x,y(x))=p(x,22). 

Combining (2.1) and (2.2) 

sup p(x, 23) - 
x~At 

Thus 

sup p(x, 22) + sup p(y(x), 23). 
xr xr 

p*(21,23) < supp(x,22) + supP(Y,23) 
xeZx xe~,l 

_-< p*(21,22) + p*(22,23). 

If p*(21,23)= supz, ~3p(z, 21) a similar argument gives also the above inequality. 
It is convenient to define a metric for A in the usual fashion. For 21,22 e A  let 

f p.(21,22 ) t3(21,22) = 1 + P*(;h,22) 

1 

"1 
, if p*(21, 22) < + m ; 

J , i f  p*(21,22) = + ~ ; 

then • is a metric for A. It is only necessary to observe that the inequalities of  
Lemma 1 show that if p*(;h,22) and p*(22,23) are finite then p*(21,22) is also 
finite and the triangle inequality is valid. If  p*(21,22) = + ~ then at least one of 
p*(21,23) or p*(23,22) also equals infinity. 

We remark that if ~ is the radius terminating at e ~~ then the set of curves A 
such that ~(~, 2) < 1 is just A*(0). 

We prove thatA*(0)is an arcwise connected space in the ~3 metric. For notational 
clarity and without loss of generality we prove this result in the case in which 
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0 = 0. In order to prove the theorem we utilize a distinguished class of points in 
A*(0). Let H(fl) be the hypercycle joining + 1 to - 1  and making angle 
( - zr/2 < fl < zc/2) with the diameter ~ = Im(z) = 0. For interior points z* of 0t, 
since H(fl) is parallel to 0~, the non-Euclidean distance of the hypercycle H(fl) 
to z* is given by 

(1) M = -~- logcot - . 

THI~OREI~I 1. Each subspace A*(0) is arcwise connected. 

Proof. Clearly we need only prove the case A(0). It suffices to show that each 
2(0 cA*(0) can be continuously deformed in the/~ metric to the diameter ~. To 
this end let 2(t) begiven. There is a number M = M(2) such that 2(0 is contained 
in the symmetric Stolz domain formed at z = 1 by hypercycles H(fl) and H ( -  fl) 
where fl is the solution of (1) for M(2). For each z e D, let Fz denote the non- 
Euclidean straight line through z perpendicular to ~. If  we denote by M, the 
non-Euclidean distance of the hypercycles H(rfl) from ct then it is clear that M, 
tends to zero as r tends to zero. Now if z'  =2(0  is a point of 2, Im z'  > 0, H(rfl) 
is a hypercycle and if p(z'; ~)>_ Mr then define the projection of z '  on H(rfl) to 
be the unique point ~ ~ H(rfl) t'3 Ft. For points z'  with Im z' < 0 we make a 
similar arrangement. 

Define the map tr of (0,1) into A*(0) as follows: a(r) = At(t) where 

I2 (0  = z if p(z,~) <Mr; 

2,(t) = ~ ~ = projection 2(0 on H(rfl) if 

p(2(t), ~) > M,. 

If  roe  (0,1) then p(x, 2,o(0) < ] M r - Mro I for x e 2,. Thus p*(2,, 2,o ) tends to zero 
as r tends to ro and the theorem is proven. We might remark that one could show 
in a similar manner that given any 2t e A  the subspaces for which t3(21,2)< 1 
are all arcwise connected. For, if /~(21,2)< d < 1, then consider the envelop 
about 21 formed by disks of non-Euclidean radii r, 0 < r < d, with centers on 21. 
Now ;t is contained in this envelop. Let 2, and ;T r denote the two boundary curves 
of the envelop. Letting 2r and )It play the roles of H(rfl) and H(-rfl) we deform 
the curve 2 into 21 by allowing r ~  0. 

3. The natural map f .  It is a characterizing property of continuous normal 
functions f that for r/ > 0 there exists a t5 = 6(~/) such that for any z '  and 
z" in D with p(z', z") < 6 then z(f(z'),f(z")) < r/. This is a direct~ consequence 
of the condition that a family of continuous functions is normal in a domain 
D if and only if it is spherically equicontinuous on compact subsets of D[3, pp. 
244-246]. (This was noted by Lappan 15].) 
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LEMMA 2. Bet A, B e A .  I f  for each point a ~ A  there exists b = b ( a ) r  
with x(a, b) < 8 and if  for  each b e B there exists an a = a(b) ~ A with x(a, b) < 
then dist (A, B) < e. 

Proof. This is an obvious consequence of the inequality 

x(a, A) <= x(a, b(a)) < 

z(b, B) <= z(b, a)) < 

THEOREM 2. l f  f is a normal function then .~ is continuous f rom A into #'. 

Proof. Let 2 o e A  and e > 0. By the normality of f there exists 0 < ~ < 1 such 
that if z', z" e D with p(z', z ") < ~ then x(f(z ' ) , f(z"))  < e/2. Let a e f(2o) and 
{Zm}, Zm e 2o,lim,,_.~ z ,  = 1 and limm_,o~J(zm)=a. Let 2 be any point of A which 
is in the/5 sphere with center 2o and radius &About  each point zm construct the 
non-Euclidean disk Dm with center Z,n and radius ~. Choose a sequence of points 
{z'} where z~, e Dr, ~ ;t. There is a subsequence z" k with limk_.~ z,,k = 1 and 

limk., oJ(z~, k) = b e f(2). 
Choosing the associated Zm~ we have p(Zr,~,z'k) < ~5 and referring to the above 

~(f(z,,~),f(Zmk)) < e/2. Passing to the limit we have x(a, b) < e/2. Interchanging 
the role of {z,} and {z',} and referring to Lemma 2 we have that 

dist(f(2o), f(2)) < e. 

Thus the sphere SQ.0, 5) is mapped into the sphere S(f(2o), 5) which is the theorem. 

4. The LinddSf property. Lehto and Virtanen [6, pp 49-52] have proven the 
following theorem. 

THEOREM. Let f ( z )  be meromorphic in D and have asymptotic value ~ at a 
point e'~ e C. I f  f has not angular limit at e i~ there is a Jordan curve ~o such 
that for  any e > O, there is an associated Jordan curve 7, in D, terminating at 
e l~ with P(Vo,V~)<e, such that f tends to ct on ~ but not on ~o. 

NOTE: This is not the exact statement of the theorem of Lehto and Virtanen 
but is a restatement of the theorem in our notation. Hence we have 

THEOREM 3. I f  f is meromorphic in D and the function f i s  continuous then f 
has the LindelSf property at d ~ 

Proof. If  f does not have the Lindelt~f property then there is a continuous 
curve such that f has limit ~ on 7 but does not have angular limit. The result of 
Lehto and Virtanen clearly imply that f is not continuous. We might note that a 
direct application of a theorem of Seidel and Bagemihl [-1, p 266] gives that for 
normal function f,  if .~(;q) = {a} for some 2j cA,  then f -  {a} on the subspace 
k(2,) . )  < 1. If we partial order the elements of #'  by set inclusion we then have 
that if f is "smallest" for some value it is constant in some neighborhood. 
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It would be nice to have a type of maximum property, to wit, if f(21)= Wthen f 
is constant for p(21, 2) < 1. But this is not so. The elliptic modular function is the 
counter-example. Details can be found in I7, p. 262]. 

We might also note that the set of right (and left) horocycles at a point e i~ 
all lie inside a p disk of radius 1. Bagemihl has recently investigated the behavior 
of f on these disks [1], investigating such problems as under what conditions 
f =  {a} on the p-disks of left and right horocycles. 

Lehto and Virtanen 1'6, pp. 54--56] have shown that a necessary and sufficient 
condition that a function f be normal is that p(f ) (z)< C/(1-[zl) ,  where C is 
a finite constant and p(f) is the spherical derivative off .  The spherical derivative 
also enables us to establish a sufficient condition that x(f(z'),f(z")) shall be 
arbitrarily small. 

We now proceed to Lemma 3. 

LEMMA 3. Let p(f)(z) = o (1/1 - Izl)for zeD,  and {Z,n}, {Z'} tWO sequences 
D, limm_.~o [ z- 1 = limm-,oo[ Zm [ = 1, p(Zm, Zm) < K, m = 1, 2,... then z(f(Zrn),f(Z~n)) 
tends to zero as rn tends to infinity. 

Proof. Assume {Zm} and {z'} are two sequences in D with the properties 
stated in the theorem. Construct a sequence of non-Euclidean disks {N(z,,,K)} 
with centers z m and radius K. We know there is a Euclidean disk O(~,(1 - [~m [)t,,,) 
with center ~m and radius ( 1 -  ]~mltm)(O<tm < 1) which coincides as a point 
set with N(zm, K). For each m let Rm be the rectilinear segment joining z m to z" 
and Cm the image of R m under f. 

Now 

z(f(zm)'f(z') ') < T T + - - ~  

where C" is the projection of the great circle joining Wm =f(Zm) to W" =f(z~,). 
By definition of C,  and C" 

l fc ldwl If. I f ' ( z ) l ldz  ] 
z(f(Zm)'f(z'm)) < T ,. 1 + [ W 2 [ = T ,. 1 + If(z) 12 

The condition on the spherical derivative that p(f)(z) = o(1/1 - I z  ])is equiv- 
alent to the statement that 

p(f)(z) < A, 
= l - r '  

If rm = Ir + (1 - I r  then 

z(f(Zm),f(z,)) < 1 A,,, fR =2  1-r .  

]z[<r, lim A,=0. 
r ' ~  1 

Idzl < h,m(1 -Iff.l)t. 
= ( 1  - r , . )  
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It is easy to show that limm-,Jm = 2L/1 + L 2, L = e 2 K -  1/e 2r + 1. 
(For details see [9].) 
From this result and the equality 

we have 

1 - r~  = (1 - [  - tra) 

125 

armtrn 
x(f(zm), f ( z ' ) )  < (1 - ' tm) " 

In the limit tm/1 -- tm is bounded so that lira x(f(Zm),f(Z'm)) = 0 With this lemma 
we now state 

THEOREM 4. Given f ( z )  defined in D such that p ( f ) ( z ) = o ( 1 / 1 - [ z [ ) .  
Then f(~,*) = f(?) for  all ?* such that p(?*,y) < 1, i.e. f is constant on each disk 
of radius one. 

Proof. For a value ~ e C~(f) there is a sequence {zm}, zm e V, I z~]-~ 1 with 
f(zm) ~ ~. Since ~(?*,?)< 1 implies p*(v*,y)< + oo there is a corresponding 
sequence {z'}, z" e ?, ] z ' ]  -~ 1 and p(zm, z ' )  < K for all m. We infer then by 
Lemma 3 that ~ e C~(f). The symmetry of the argument implies the result. 

As an example of a holomorphic function f(z) satisfying p( f ) ( z )  = o (1 /1 -  I z ]) 
we may consider a spiral domain bounded by Jordan curves 21(0 and 22(0 which 
are spirals in D tending to C with 21(0)= 22(0)= 0 but otherwise disjoint. 
Parametrize 21 and 2 2 SO that 21(0= rl(t)ei~162 2 2 ( t ) = r 2 ( t ) e  i~ where rl(t) 
< r2(t ) and limt_+lrl(t ) = limt_+lr2(t ) = 1. If A is the simply connected region 
bounded by 21 and 22 then by Riemann mapping theorem there is a univalent 
function f mapping D onto A. 

A result of Seidel and Walsh [10, p 124"] is that 

If,(zo)l(1 -Izol) 4Dl(wo) 

where Dl(wo) is the radius of univalence o f f - 1  at Wo =f(Zo). For any sequence 
{zm} e D with [Zm ] ~ 1 we note Dl(wm) = Dl(f(Zm)) ~ O. This implies p( f ) ( z )  

Izl). 
From the theory of prime ends it is clear that for this function f there is a point 

e i~ such that f(z) = C for every path ending at e i~ 
There is a further condition under which Theorem 4 also holds. The notation 

R(f ,e  t~ is used for the range of f where 

R(f,  e i~ = {w e W[ there is {Zm}, z m e D, z m ~ e '~ m ~ oo and f(Zm) = W). 

THEOREM 5. I f  f is a meromorphic function in D such that interior R(f,  e i~  
then given any curve y we have f ( y ' ) = f ( ? ) f o r  all curves v ' e A  such that 
P(r',7) < 1. 
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Proof. W e  refer the reader  to  a pape r  o f  Rung  I-8, p p  48-49]  which proves  

the  result  in the case o f  curves ? c A*(0) and  note  tha t  the a rgument  is easily ex- 

t ended  to  cover  the  o ther  cases. 
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